Sine Rule:
The sides of a triangle are
proportional to the sines of the angles opposite to them.
a / sin A = b / sin B = c / sin C = 2R (Or) sin A /a = sin B /b = sin C/c = 1/2R
Where R is the circum radius of the
circle.
Ex:
If R = 3, a = 6 Then ∟A =?
Sol:
a = 2Rsin A => 6 = 6 sin A
=> sin A = 1 => ∟A = 90⁰
Cosine Rule:
The
angle of a triangle
are related to three sides of a triangle by cosine rule.
cos A = b2 + c2
– a2 / 2bc (or) a2 = b2 + c2 – 2bc
cos A
cos B = a2 + c2
- b2 / 2ac (or) b2 = c2 + a2 – 2ac
cos B
cos C = a2 + b2
- c2 / 2ab (or) c2 = a2 + b2 – 2ab
cos C
Ex:
If a2 + b2 = c2
find cos C
Sol:
cos C = a2 + b2
- c2 / 2ab = 0/ 2ab = 0 => ∟C = 900
No comments:
Post a Comment