Complement of a set:-
The complement of the set A denoted by
universal set,
Ac = μ - A
Ac = {x | x ∉
A}
By definition A ∩ Ac = φ
A∩Ac = μ
|Ac|= |μ|-|A|
|Ac|+ |A|= |μ|
Prove that: A-B = A ∩ Bc
A-B ={x |x ϵ A and x ∉
B}
= {x |x ϵ A and x ∉
Bc}
= A ∩ Bc
B-A = B ∩ Ac (imp results)
A-B = A ∩ Bc
De Morgan’s Laws:-
For any two sets A, B
(i) (A U B)c = Ac
∩ Bc
(ii) (A ∩ B)c = Ac
U Bc
(iii) A – (B U C) = (A - B) ∩ (A - C)
(iv) A – (B ∩ C) = (A - B) U (A - C)
(v) |Ac|c = A
Given two non-empty sets A, B which
are not disjoint then represents the following sets in venn diagram.
(i) Ac
(ii)(A ∩ B)c = Ac
U Bc
(iii) Ac ∩ Bc =
(A U B)c
Note:
|A U B U C|= |A ∩ Bc ∩ Cc
|+ | Ac ∩ B ∩ Cc| + Ac ∩ Bc ∩ C) +
|A U B U Cc | + |A ∩ Bc ∩ Cc |+ | Ac ∩
B ∩ C| + |A ∩ B ∩ C|
For any 3 set A, B, C
|A U B U C|= |A|+ |B|+|C|- |A∩B|- |B∩C|-|A∩C|+|A∩B∩C|
|A U B U C U D|= | (A U B) U (C U D)|
=|A U B|+ |C U D|- | (A U B) ∩ (C U
D)|
= |A|+ |B| - |A∩B|+ |C|+|D|- |C ∩ D|-
|A ∩ D| - |B ∩ C|- |A ∩ B ∩ C|+|A ∩ B ∩ D|+ |A ∩ C ∩ D|+|B ∩ C ∩ D|- |B ∩ D|-
|A ∩ C|- |A ∩ B ∩ C ∩ D|
Note:
|A1 U A2 U A3
--- U An|
Principle of inclusion and exclusion:-
|AC1 ∩ AC2 ∩ --- ACn|= |μ|- |A1
U A2 U --- U An|
No comments:
Post a Comment