
⇒
sinx/x = 1
sinx/x = 1
⇒
tanx/x = 1
tanx/x = 1
⇒
sin⁻¹x/x = 1
sin⁻¹x/x = 1
⇒
tan⁻¹x/x = 1
tan⁻¹x/x = 1
⇒
sinx⁰/x =
π/180
sinx⁰/x =
π/180
⇒
sin (x - a)/(x
- a) = 1
sin (x - a)/(x
- a) = 1
⇒
tan (x -
a)/(x - a) = 1
tan (x -
a)/(x - a) = 1
⇒
|sinx|/x does
not exist
|sinx|/x does
not exist
⇒
|tanx|/x
does not exist
|tanx|/x
does not exist
⇒
|sin (x -
a)|/(x - a) does not exist
|sin (x -
a)|/(x - a) does not exist
⇒
|tan (x -
a)|/(x - a) does not exist.
|tan (x -
a)|/(x - a) does not exist.
Expansions useful in evaluation of limits:
1. (1 + x)ⁿ = 1 + nx + n [(n - 1)/2!] x² + [n (n - 1) (n - 2)/3!] x³ + …
2. eˣ = 1 + x/1! + x²/2! + x³/3!
3. aˣ = 1 + x/ 1! [logₑᵃ] + x²/2! [x²(logₑᵃ)²] + …
4. log (1 + x) = x - x²/2 + x³/3 - x⁴/4 + …
5. log (1 - x) = - x - x²/2 - x³/3 - x⁴/4 + …
6. sinx = x + x³/3! + x⁵/5! + …
7. cos x = 1 - x²/2! + x⁴/4! + …
8. tan x = x + x³/3 + 2/15 x⁵ + …
9. sin⁻¹ x = x + ½ x³/3 + ½ ¾ x⁵/5 + …
10. tan⁻¹ x = x - x³/3 + x⁵/5 + …
11. sec⁻¹ x = 1 + x²/2! + 5 x⁴/4! + …
Solution: we have,
Evaluation of exponential and logarithm limits:
(aˣ - 1)/ x = logₑa, a > 0
2.
logₑ (1 + x)/x = 1
logₑ (1 + x)/x = 1
3.
(eˣ - 1)/x =
logₑ = 1
(eˣ - 1)/x =
logₑ = 1
4.
logₐ (1 + x)/x = logₐe
logₐ (1 + x)/x = logₐe
Evaluate: 

Solution:We have,

= - e x - ½ = e/2

No comments:
Post a Comment