- ex = 1 + x/1! +x²/2! + x³/3!
+ … + xn / n! + … ∞
- e-x = 1 - x/1! +x²/2! - x³/3!
+ … + (-1)n xn / n! + … ∞
- sinhx = (ex – e-x)
/ 2 = x/1! +x²/3! + … + … ∞
- coshx = (ex + e-x)
/ 2 = 1 +x²/2! + … ∞
- tanhx = sinhx/ coshx = (ex –
e-x)/ (ex + e-x)
- sechx = 1/ coshx = 2/ (ex +
e-x)
- cosechx = 1/ sinhx = 2/ (ex
+ e-x)
- cothx = 1/ tanhx = (ex + e-x)/
(ex – e-x)
- sinh (-x) = - sinhx
- cosh (-x) = coshx
- tanh (-x) = - tanhx
- sechx (-x) = sechx
- cosech (-x) = - cosechx
- sinh (x ± y) = sinhx coshy ± coshx
sinhy
- cosh (x ± y) = coshx coshy ± sinhx
sinh
- tanh (x ± y) = (tanhx ± tanhy)/ (1 ±
tanhx tanhy)
- sinh2x = 2 sinhx coshx = 2 tanhx/ (1 -
tanh² x)
- cosh2x = cosh²x + sinh²x = (1+ tanh²x)/
(1 - tanh²x)
- tanh2x = 2tanhx/ (1 + tanh² x)
- sinh2x + cosh2x = (1 + tanhx) / (1 –
tanhx)
- sinh3x = 3 sinhx + 4 sinh³x
- cosh 3x = 4 cosh³x – 3 coshx
- tanh 3x = (3 tanhx + tan³x)/ (1 +
3tanh²x)
- sinh (x + y) sinh(x - y) = sinh³x -
sinh²y
- cosh (x + y) cosh (x - y) = cosh²x +
sinh²y
- (coshx + sinhx)n = (cosh[nx]
+ sinh [nx]) = enx
- (coshx - sinhx)n = (cosh [nx]
- sinh [nx]) = e-nx
- cosh (2nx) + sinh (2nx) = [(1 + tanhx)/ (1 - tanhx)]n
Function
|
Domain
|
Range
|
sinhx
|
R
|
R
|
coshx
|
R
|
[1, ∞)
|
tanhx
|
R
|
(-1, 1)
|
cothx
|
R – {0}
|
R – [-1, 1]
|
cosechx
|
R – {0}
|
R – {0}
|
sechx
|
R
|
(0, 1]
|
Graphs of Hyperbolic functions
i)
y = sinhx
ii)
y = coshx
iii)
y = tanhx
iv)
y = cothx
v)
y = sechx
vi)
y = cosechx
No comments:
Post a Comment