MyRank

Click here to go to MyRank

Tuesday, September 27, 2016

hyperbolic functions

  • ex = 1 + x/1! +x²/2! + x³/3! + … + xn / n! + … ∞

  • e-x = 1 - x/1! +x²/2! - x³/3! + … + (-1)n xn / n! + … ∞

  • sinhx = (ex – e-x) / 2 = x/1! +x²/3! + … + … ∞

  • coshx = (ex + e-x) / 2 = 1 +x²/2! + … ∞

  • tanhx = sinhx/ coshx = (ex – e-x)/ (ex + e-x)

  • sechx = 1/ coshx = 2/ (ex + e-x)

  • cosechx = 1/ sinhx = 2/ (ex + e-x)

  • cothx = 1/ tanhx = (ex + e-x)/ (ex – e-x)

  • sinh (-x) = - sinhx

  • cosh (-x) = coshx

  • tanh (-x) = - tanhx

  • sechx (-x) = sechx

  • cosech (-x) = - cosechx

  • sinh (x ± y) = sinhx coshy ± coshx sinhy

  • cosh (x ± y) = coshx coshy ± sinhx sinh

  • tanh (x ± y) = (tanhx ± tanhy)/ (1 ± tanhx tanhy)

  • sinh2x = 2 sinhx coshx = 2 tanhx/ (1 - tanh² x)

  • cosh2x = cosh²x + sinh²x = (1+ tanh²x)/ (1 - tanh²x)

  • tanh2x = 2tanhx/ (1 + tanh² x)

  • sinh2x + cosh2x = (1 + tanhx) / (1 – tanhx)

  • sinh3x = 3 sinhx + 4 sinh³x

  • cosh 3x = 4 cosh³x – 3 coshx

  • tanh 3x = (3 tanhx + tan³x)/ (1 + 3tanh²x)

  • sinh (x + y) sinh(x - y) = sinh³x - sinh²y

  • cosh (x + y) cosh (x - y) = cosh²x + sinh²y

  • (coshx + sinhx)n = (cosh[nx] + sinh [nx]) = enx

  • (coshx - sinhx)n = (cosh [nx] - sinh [nx]) = e-nx

  • cosh (2nx) + sinh (2nx) = [(1 + tanhx)/ (1 - tanhx)]n

Function
Domain
Range
sinhx
R
R
coshx
R
[1, ∞)
tanhx
R
(-1, 1)
cothx
R – {0}
R – [-1, 1]
cosechx
R – {0}
R – {0}
sechx
R
(0, 1]

 Graphs of Hyperbolic functions
i) y = sinhx
ii) y = coshx
iii) y = tanhx
iv) y = cothx
v) y = sechx
vi) y = cosechx

No comments:

Post a Comment