MyRank

Click here to go to MyRank

Saturday, September 24, 2016

Inverse Hyperbolic functions

Formulaes:

§  sinh-1 x = loge (x + √(x² + 1))

§  cosh-1 x = loge (x + √(x² - 1)) for x ≥ 1

§  tanh-1 x = ½ log [(1 +x)/ (1 – x)] for x ϵ (-1, 1)

§  coth-1 x = ½ log [(1 +x)/ (1 – x)] for |x| > 1

§  sech-1 x = loge (1 + √ (1 - x²)/ x) for x ϵ (0, 1]

§  cosech-1 x = loge (1 + √ (1 + x²)/ x) for x > 0

= loge (1 - √ (1 + x²)/ x) for x < 0

§  sinh-1 x = cosh-1 √(x² + 1) = cosech-1 (1/ x) = tanh-1 (x / √ (1 + x²))

§  cosh-1 x = sinh-1 √(x² - 1) = sech-1 (1/ x) = tanh-1 (√ (1 + x²) / x)

Function
domain
Range
sinh-1 x
R
R
cosh-1 x
[1, ∞)
[0, ∞)
tanh-1
(-1, 1)
R
coth-1 x
R – [-1, 1]
R – {0}
sech-1 x
(0,1]
[0, ∞)
cosech-1 x
R – {0}
R – {0}

Graphs of inverse hyperbolic functions:

i) y = sinh-1 x
ii) y = cosh-1 x
iii) y = tanh-1 x
iv) y = sech-1 x
v) y = cosech-1 x
vi) y = coth-1 x

No comments:

Post a Comment