Formulaes:
§ sinh-1 x = loge (x + √(x²
+ 1))
§ cosh-1 x = loge (x + √(x²
- 1)) for x ≥ 1
§ tanh-1 x = ½ log [(1 +x)/ (1 – x)] for x ϵ
(-1, 1)
§ coth-1 x = ½ log [(1 +x)/ (1 – x)]
for |x| > 1
§ sech-1 x = loge (1 + √
(1 - x²)/ x) for x ϵ (0, 1]
§ cosech-1 x = loge (1 + √
(1 + x²)/ x) for x > 0
= loge (1 - √ (1 + x²)/ x) for x
< 0
§ sinh-1 x = cosh-1 √(x² +
1) = cosech-1 (1/ x) = tanh-1 (x / √ (1 + x²))
§ cosh-1 x = sinh-1 √(x² -
1) = sech-1 (1/ x) = tanh-1 (√ (1 + x²) / x)
Function
|
domain
|
Range
|
sinh-1
x
|
R
|
R
|
cosh-1
x
|
[1, ∞)
|
[0, ∞)
|
tanh-1
|
(-1, 1)
|
R
|
coth-1
x
|
R – [-1, 1]
|
R – {0}
|
sech-1
x
|
(0,1]
|
[0, ∞)
|
cosech-1
x
|
R – {0}
|
R – {0}
|
Graphs of inverse hyperbolic functions:
i)
y = sinh-1 x
ii)
y = cosh-1 x
iii)
y = tanh-1 x
iv)
y = sech-1 x
v)
y = cosech-1 x
vi)
y = coth-1 x
No comments:
Post a Comment