Formulae:
- Sin (A + B) + sin (A - B) = 2 sinA cosB
- sin (A + B) - sin (A - B) = 2 cosA sinB
- cos (A + B) + cos (A - B) = 2 cosA cosB
- cos (A - B) - cos (A + B) = 2 sinA sinB
- sinC + sinD = 2 sin (c + D)/2 cos (C -D)2
- cosC + cosD = 2 cos (c + D)/2 cos (C -D)2
- cosC - cosD = -2 sin (c + D)/2 sin (C -D)2
Ex 1: If A + B + C = π then sin 2A + sin 2B + sin 2C =?
Solution:
sin 2A + sin 2B + sin 2C
= 2 sin(2A + 2B)/2 cos(2A – 2B)/2 + sin 2C
= 2 sin (A + B) cos (A - B) + sin 2C
= 2 sin C [cos (A - B) + cos C]
= 2 sin C [cos (A - B) - cos (A + B)]
= 4 sinA sinB sinC
Ex 2:Find the value of cos 15
Solution:
We have cos 2θ = 2 cos² θ - 1
=> cos 30 = 2 cos² 15 - 1
=> √3/2 + 1 = 2 cos² 15
=> (√3 + 2)/ 4 = cos² 15
=> (2√3 + 4)/ 8 = cos² 15
=> (√3 + 1)² / 8 = cos² 15
=> cos 15 = (√3 + 1)/2√2
Ex 3: If A + B + C = π then Tan A/2 Tan B/2 + Tan B/2 Tan C/2 + Tan C/2 Tan A/2 =?
Solution:
A + B + C = π
=> A/2 + B/2 = π/2 – C/2
=> Tan (A/2 + B/2) = Tan (π/2 – C/2)
=> ([Tan A/2 Tan B/2]/1 - Tan B/2 Tan A/2) = cot C/2
=> ([Tan A/2 Tan B/2]/1 - Tan A/2 Tan B/2) = 1/Tan C/2
=> Tan A/2 Tan C/2 + Tan B/2 Tan C/2 = 1 - Tan A/2 Tan B/2
=> Tan A/2 Tan B/2 + Tan B/2 Tan C/2 + Tan C/2 Tan A/2 = 1
No comments:
Post a Comment