Property VIII:
Property IX:
Property X:
Property XI:
Property XII:
Property XIII:
(i) sin-¹ x = cos-¹ √(1 - x²) = tan-¹ [x / √(1 - x²)]
= cot-¹ √(1 - x²) / x = sec-¹ [1 / √(1 - x²)]
= cosec-¹ (1/x)
(ii) cos-¹ x = sin-¹ √(1 - x²) = tan-¹ [√(1 - x²) / x]
= cot-¹ [x / √(1 - x²)] = sec-¹ 1/x
= cosec-¹ [1/ √(1 - x²)]
(iii) tan-¹ x = sin-¹ [x / √(1 + x²)] = cos-¹ [x / √(1 + x²)]
= cot-¹ (1/x) = sec-¹ √(1 + x²)
= cosec-¹ [√(1 + x²) / x]
(i) sin-¹ x = cos-¹ √(1 - x²) = tan-¹ [x / √(1 - x²)]
= cot-¹ √(1 - x²) / x = sec-¹ [1 / √(1 - x²)]
= cosec-¹ (1/x)
(ii) cos-¹ x = sin-¹ √(1 - x²) = tan-¹ [√(1 - x²) / x]
= cot-¹ [x / √(1 - x²)] = sec-¹ 1/x
= cosec-¹ [1/ √(1 - x²)]
(iii) tan-¹ x = sin-¹ [x / √(1 + x²)] = cos-¹ [x / √(1 + x²)]
= cot-¹ (1/x) = sec-¹ √(1 + x²)
= cosec-¹ [√(1 + x²) / x]
Property XIV:
If x₁, x₂,
… xn ϵ R, then
tan-¹
x₁ + tan-¹ x₂ + … + tan-¹ xn = tan-¹
[(s₁ - s₃ + s₅ - s₇ + ...) / (1 - s₂ + s₄ - s₆ + …)]
Where Sk
= sum of the products of x₁, x₂, … xn taken k at a time.
Lovely
ReplyDelete