MyRank

Click here to go to MyRank

Friday, September 9, 2016

Properties of inverse trigonometric functions I

Property I:
(i)                 sin-¹ (sin θ) = θ                           for all θ ϵ [-π / 2, π / 2]

(ii)               cos-¹ (cos θ) = θ                          for all θ ϵ [0, π]

(iii)             tan-¹ (tan θ) = θ                          for all θ ϵ [-π / 2, π / 2]

(iv)              cosec-¹ (cosec θ) = θ                  for all θ ϵ [-π / 2, π / 2]

(v)                sec-¹ (sec θ) = θ                          for all θ ϵ [0, π], θ ≠ π / 2

(vi)              cot-¹ (cot θ) = θ                          for alll θ ϵ [0, π]

Property II:
(i)                 sin (sin-¹ x) = x                           for all x ϵ [-1, 1]
(ii)               cos (cos-¹ x) = x                         for all x ϵ [-1, 1]

(iii)             tan (tan-¹ x) = x                          for all x ϵ R

(iv)              cosec (cosec-¹ x) = x                  for all x ϵ [-∞, -1] U [1, ∞]

(v)                sec (sec-¹ x) = x                         for all x ϵ [-∞, -1] U [1, ∞]

(vi)              cot (cot-¹ x) = x                          for all x ϵ R

REMARK:  It should be noted that sin-¹ (sin θ) ≠ θ, if all θ [-π / 2, π / 2]. In fact, we have.
                       
Similarly, we have



Property III:
(i)                 sin-¹ (-x) = - sin-¹ x,                   for all x ϵ [-1, 1]

(ii)               cos-¹ (-x) = π - cos-¹ x,              for all x ϵ [-1, 1]

(iii)             tan-¹ (-x) = - tan-¹ x,                  for all x ϵ R

(iv)              cosec-¹ (-x) = - cosec-¹ x,          for all x ϵ [-∞, -1] U [1, ∞]

(v)                sec-¹ (-x) = π - sec-¹ x,               for all x ϵ [-∞, -1] U [1, ∞]

(vi)              cot-¹ (-x) = π - cot-¹ x,               for all x ϵ R.

Property IV:
(i)                 sin-¹ (1/x) = cosec-¹ x,               for all x ϵ [-∞, -1] U [1, ∞]

(ii)               cos-¹ (1/x) = sec-¹ x,                  for all x ϵ [-∞, -1] U [1, ∞]
(iii)            

Property V:
(i)                 sin-¹ x + cos-¹ x = π/2,               for all x ϵ [-1, 1]

(ii)               tan-¹ x + cot-¹ x = π/2,               for all x ϵ R

(iii)             sec-¹ x + cosec-¹ x = π/2,           for all x ϵ [-∞, -1] U [1, ∞]

Property VI:
Property VII:


No comments:

Post a Comment